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My Goals Today

1. Introduce what measurement error is.
2. Demonstrate how measurement error impacts analyses.
3. Introduce how simulation extrapolation can be used to overcome

these concerns.
4. Provide a nonparametric extension to these methods.



An Illustrative Example

Suppose we want to determine the relationship between
BMI and hypertensive status, controlling demographic

factors.



An Illustrative Example

The study data that we are using has self-reported weight
and height, in place of clinical measurements for most

patients.

Self-Reported BMI = True BMI + Noise



Simulated Dataset

Patient # Hypertension Age True BMI Reported BMI
X + U

1 Y1 W1 X1 X ∗
1

2 Y2 W2 X2 X ∗
2

...
n1 Yn1 Wn1 Xn1 X ∗

n1

n1 + 1 Yn1+1 Wn1+1 – X ∗
n1+1

...
n Yn Wn – X ∗

n

Goal: Determine the relationship given by E [Y |X ,W ].





Basic Correction: Simulation Extrapolation

Step 1: Simulate additional measurement error, and
compute the estimators of interest.

Step 2: Extrapolate this relationship to the case where no
error is present.



Mathematical Intuition

+X=X ∗X ∗(λ) U

N(0, σ2
U)

+
√
λσUϵ

N(0, λσ2
U)

N(0, (1 + λ)σ2
U)

E [X ∗(λ)|X ] = X

var[X ∗(λ)|X ] = (1 + λ)σ2
U

As λ → −1, this tends to X .
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Simulation Extrapolation

Correction Procedure

1. Add extra measurement error and fit
the model of interest.

2. Repeat this for progressively more
measurement error.

3. Predict the outcome based on the
amount of extra error used.

4. Extrapolate to the case where there is
no error.
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Simulation Extrapolation

Correction Procedure
1. Add extra measurement error and fit

the model of interest.
2. Repeat this for progressively more

measurement error.
3. Predict the outcome based on the

amount of extra error used.
4. Extrapolate to the case where there is

no error.





The Problem

Is the assumption that U is normally distributed
reasonable?

Oftentimes, no.





Our Solution: Nonparametric Simulation Extrapolation

+X=X ∗(λ) U +
∑λ

ℓ=1 Ũℓ

Drawn from F̂U

As λ → −1, this has the
same properties as before.



Our Solution: Nonparametric Simulation Extrapolation

+X=X ∗(λ) U +
∑λ

ℓ=1 Ũℓ
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Drawn from F̂U

As λ → −1, this has the
same properties as before.



Software Implementation

An R implementation is available at
https://github.com/DylanSpicker/np-simex.





Contributions of the NP-SIMEX

▶ Can account for errors with any distributional assumption assuming validation data
are available.

▶ Can account for errors with any symmetric distributional assumption using
replicate data.

▶ Can accommodate dependent errors which differ based on the true value of X .
▶ Results in asymptotically normal estimators.
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Conclusions

By re-sampling from the empirical error distribution we
can render the SIMEX estimators nonparametric, while

maintaining their same, familiar form.

This is done with little additional complexity.



Thank You.

Dylan Spicker
dylan.spicker@uwaterloo.ca | www.dylanspicker.com


