Nonparametric Simulation Extrapolation for Measurement Error Models

Dylan Spicker*, Michael Wallace, Grace Yi

University of Waterloo

Thursday June 2, 2022

- 1. Introduce what measurement error is.
- 2. Demonstrate how measurement error impacts analyses.
- 3. Introduce how simulation extrapolation can be used to overcome these concerns.
- 4. Provide a nonparametric extension to these methods.

Suppose we want to determine the relationship between BMI and hypertensive status, controlling demographic factors.

The study data that we are using has self-reported weight and height, in place of clinical measurements for most patients.

Self-Reported BMI = True BMI + Noise

Simulated Dataset

Patient #	Hypertension	Age	True BMI	Reported BMI $X + U$
1	Y_1	W_1	X_1	X ₁ *
2	Y ₂	W_2	X_2	X_2^*
<i>n</i> 1	Y_{n_1}	W_{n_1}	X_{n_1}	$X^*_{n_1} \ X^*_{n_1+1}$
n_1+1	Y_{n_1+1}	W_{n_1+1}	—	$X^*_{n_1+1}$
n	Y _n	W _n	-	<i>X</i> _n *

Goal: Determine the relationship given by E[Y|X, W].

Basic Correction: Simulation Extrapolation

Step 1: Simulate additional measurement error, and compute the estimators of interest.

Step 2: Extrapolate this relationship to the case where no error is present.

 $X^* = X + U$

 $X^* = X + U$

 $N(0, (1 + \lambda)\sigma_U^2)$ $N(0, \sigma_U^2) \qquad N(0, \lambda\sigma_U^2)$ $\uparrow \qquad \uparrow$ $X^*(\lambda) = X + U + \sqrt{\lambda}\sigma_U\epsilon$

 $N(0, (1+\lambda)\sigma_{II}^2)$ $N(0, \sigma_{II}^2)$ $N(0, \lambda \sigma_U^2)$ $X^*(\lambda) = X + U + \sqrt{\lambda}\sigma_{II}\epsilon$ $\searrow E[X^*(\lambda)|X] = X$

 $N(0, (1+\lambda)\sigma_{II}^2)$ $N(0, \lambda \sigma_U^2)$ $N(0, \sigma_{II}^2)$ $X^*(\lambda) = X + U + \sqrt{\lambda}\sigma_{II}\epsilon$ $\searrow E[X^*(\lambda)|X] = X$ $\searrow \operatorname{var}[X^*(\lambda)|X] = (1+\lambda)\sigma_U^2$

Correction Procedure

1. Add extra measurement error and fit the model of interest.

- 1. Add extra measurement error and fit the model of interest.
- 2. Repeat this for progressively more measurement error.

- 1. Add extra measurement error and fit the model of interest.
- 2. Repeat this for progressively more measurement error.
- 3. Predict the outcome based on the amount of extra error used.

- 1. Add extra measurement error and fit the model of interest.
- 2. Repeat this for progressively more measurement error.
- 3. Predict the outcome based on the amount of extra error used.
- 4. Extrapolate to the case where there is no error.

Is the assumption that *U* is normally distributed reasonable?

Oftentimes, no.

Our Solution: Nonparametric Simulation Extrapolation

$\overline{X^*(\lambda)} = X + U + \sum_{\ell=1}^{\lambda} \widetilde{U}_{\ell}$

Our Solution: Nonparametric Simulation Extrapolation

Our Solution: Nonparametric Simulation Extrapolation

$X^*(\lambda) = X + U + \sum_{\ell=1}^{\lambda} \widetilde{U}_{\ell}$

As $\lambda \to -1$, this has the same properties as before.

Search or jump to / Pull requests Issues Marketplace Explo						
DylanSpicker / np-simex (Palle)				\$ Pin		
O Caster 🕐 binnest 👔 hall responses 🛞 Antimes 🔝 Wills 🔘 Security 🖂 Insights 🔛 Security 🖂 Insights						
	P main + P 1 branch ⊗0 tags	Go to file Add file * Code -				
	DytanSpicker Add files via upload	c33ced5 2 minutes ago 🔞 2 commits	Public repository for the nonparametric simulation extrapolation (NP-SIMEX).			
	README.md Create README.md	2 minutes ago	Readme Assesses			
Software Impleme	ntation					

An R implementation is available at https://github.com/DylanSpicker/np-simex.

- . 8 (defaults to 50) The number of re-sampled iterations to average over for each value of lambda.
- parallel (defaults to TRUE) Whether the re-sampling should be parallelized or not. Implementations exist for both the fereach package and parallel::sclapply.
- numCores (defaults to parallel::detectCores()/2) The number of cores to be used, if parallelization occurs
- est.variance (defaults to "none") The method for estimating the variance. If it is provided as "jackknife" then the modified Jackknife procedure is used, otherwise no asymptotic variances are estimated.
- parPackage (defaults to "foreach") Which method for parallelizing is used. If this is anything other than
 "foreach", and parallel = TRUE, then parallel::mclapply will be used.
- smoothed (defaults to FALSE) Should smoothed density estimators be used. If so samples are drawn from the KDE estimate of the distribution of u, rather than from the empirical distribution.
- het (defaults to FALSE) Are the errors heterogenous, in that u and x are dependent. If so conditional KDEs are used in place of the empirical error distribution.

Can account for errors with any distributional assumption assuming validation data are available.

- Can account for errors with any distributional assumption assuming validation data are available.
- Can account for errors with any symmetric distributional assumption using replicate data.

- Can account for errors with any distributional assumption assuming validation data are available.
- Can account for errors with any symmetric distributional assumption using replicate data.
- ▶ Can accommodate dependent errors which differ based on the true value of X.

- Can account for errors with any distributional assumption assuming validation data are available.
- Can account for errors with any symmetric distributional assumption using replicate data.
- ▶ Can accommodate dependent errors which differ based on the true value of X.
- Results in asymptotically normal estimators.

By re-sampling from the empirical error distribution we can render the SIMEX estimators nonparametric, while maintaining their same, familiar form.

This is done with little additional complexity.

Thank You.

Dylan Spicker dylan.spicker@uwaterloo.ca | www.dylanspicker.com